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The symmetrical  problem of the freezing of a plane-paral lel  plate is 
solved approximately for boundary conditions of the third kind. 

The process  in question consists of two stages: 1) 
attainment of the cryoscopic temperature at the sur -  
face and 2) freezing, during which a change in the 
state of aggregation takes place. 

The f irs t  stage is familiar [1] and is not considered 
in this paper. We note only that as a resul t  of the ana- 
lytic solution of the f i r s t - s tage  problem we accurately 
know the temperature t2(x, 0) = fix), in part icular  the 
temperature of the middle plane tmp = t2(R, 0), which 
corresponds to the beginning of the second stage (~- = 
= 0), when the temperature  tcr is reached at both sur -  
faces (the problem is assumed symmetrical) .  

If we locate the coordinate origin at the left surface 
of the plate and denote by ~ the instantaneous position 
of the freezing boundary, the mathematical formulation 
of the problem will be as follows [1]: 

Ot 1 02ti ci~-~=~.1 ~OP (~>0 ,  0 < x ~ U ,  (1) 

Or2 O2t~ (T > O, ~ < X < R), (2) 
C2 V". - ~  = X~ OX----- F 

t2(x, O) = [(x), (3) 

{ Otll " = a-a~ it1(0, "0--tml, (4) 
Ox I~=~ ~.1 

Ot~-I = 0, (5) 
Ox J~=~ 

t I (~, "C) = l., (~, T) = tCr, (6) 

where 

p--wooL. 

Equation (7) is Stefan's condition [2], which dates 
from 1889 ; it is derived in many monographs (for 
example [3,4]). 

There is considerable l i terature concerned with the 
solution and investigation of problems with a moving 
boundary, starting with the work of Lam~ and Clapeyron 
in 1831and ending with the research  of L. I. Rubinshtein, 
which has been published during the last twenty years ,  
including [5]. However, with ra re  exceptions there has 
been no success  in obtaining an analytic solution of these 
problems,  and the known numerical methods require a 
considerable expenditure of time and labor. 

In applied thermophysics it is necessary  to r e so r t  
to simplified approximate methods giving a solution 
accurate enough for engineering purposes. Par t icular ly  
worth noting are those involving the replacement of 
the true temperature curves with approximate analogs 
based on various physical considerations. However, 
even when the temperature curves themselves are 
closely approximated, Stefan's condition (7) may intro-  
duce very  large e r ro r s ;  since it also contains the de- 
r ivatives at the corner  point (at x = ~), the slopes of 
the tangents may differ considerably from the true 
values. 

For  this reason the method proposed by L. S. 
Leibenzon [6] is part icular ly valuable. This method 
makes it possible to introduce instead of derivatives 
determined at the phase interface quantities determined 
at the surface. For  heat conduction problems Leib- 
enzon called his condition the integral condition and 
noted that his method is analogous to the approximate 
method represented by Karman 's  integral condition in 
boundary layer  theory. 

Leibenzon's method has been used by many investi- 
gators,  in part icular  by A. N. Tikhonov and E. G. 
Shvidkovskii [7] in their well-known work on the 
theory of continuous casting. 

In connection with the freezing problems that con- 
front the refr igerat ion industry the approximate for-  
mulas of R. Plank (he began this work in 1913 [8]) are 
well-known. These formulas can be refined by approxi- 
mately solving systems (1)-(7). 

Following Leibenzon's ideas, we will f i rs t  t rans-  
form condition (7). Integrating both sides of Eq. (1) 
from 0 to ~, we have 

t~  or, dx. I8t 
[ Ox j.=~ ( Ox Jx=o = clY1 0-T 

o 

Similarly, from (2), integrating from ~ to R, we ob- 
tain 

R 
Iot l tot, 1 = S or, (9) 

Finding the quantities {~t~/ax} x=~ and {St2/aX)x=~ 
from (8) and (9) and using the symmet ry  condition (5), 
we can rewrite  Stefan's condition (7) in the form 

t0t, l 
R 

~ Otl f or" dx. (10) + c~ 71 ~ dx + c2 W 0 
o 
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Noting that  

at at d 
Ox O~ dv '  

we can w r i t e  condi t ion  (10) as  fol lows:  

R 

at~ dx] d ~ _  
o t 

= ~ ( Ox ).~=o (11) 

When the t e m p e r a t u r e  c u r v e s  t l  = t i (x ,  T) and t 2 = 
= t2(x, ~') a r e  a p p r o x i m a t e l y  a s s igned ,  i t  i s  undoubtedly  
m o r e  a c c u r a t e  to d e t e r m i n e  the f ron t  ~ = ~(T) f r o m  the 
o r d i n a r y  d i f f e r e n t i a l  equat ion with s e p a r a b l e  v a r i a b l e s  
(11) than f r o m  Eq. (7). 

We p r e s e n t  one p o s s i b l e  v a r i a n t  of the a p p r o x i m a t e  
so lu t ion  of p r o b l e m s  (1) - (7) ,  t ak ing  a l i n e a r  law of 
v a r i a t i o n  of t e m p e r a t u r e  t l  in the f r o z e n  zone (which 
c o r r e s p o n d s  to a s t a t i o n a r y  t e m p e r a t u r e  d i s t r i bu t ion )  
and a p a r a b o l i c  law of v a r i a t i o n  for  t2 in the l iquid  
zone. Then in the equat ion 

ti = ClX + C,2 

the cons tan t s  C i and C 2 a r e  found f r o m  condi t ions  (4) 
and (6), and t h e r e f o r e  

+ (z [q (0, ~) - -  tml ( x - -  ~). (12) t 1 (x, "~) = tcr X~ 

In o r d e r  to e l i m i n a t e  f r o m  (12) the t e m p e r a t u r e  at  
the s u r f a c e  t~(0, T) which i s  inconven ien t  for  p r a c t i c a l  
compu ta t i ons ,  we se t  x = 0 and f r o m  the equat ion 

c~ [t~(O, T)- - tm]~ q (o, ~) = ~o~-- ~ 

we find 

q (O, ,) = ( tcr + ~ tm) / ( l _~ ) (13) 

Subs t i tu t ing  (13) in (12), we f ina l ly  obtain 

t~(x, ~ ) =  tcr q t c r - t m ( x - ~ )  (0 .<x-<~) .  (14) 
X~/e + 

It  i s  e a s y  to s ee  that  when condi t ions  (5) and (6) a r e  
s a t i s f i e d  the p a r a b o l i c  law of v a r i a t i o n  of t2 in the 
i n t e r v a l  ~ -< x -< R should  be taken  in the f o r m  

( 
to. (x, ~) ---,G (R, ~) + ftc~ - -  t~ (R, z)I \ R --  ~ / 

t o , -  t~p[ ( a -  x)~] 
t2 (x, ,) --- tmp-~ R ~ + R - -  ~ ] 

(~ < x ~ R ) .  (17) 

Using  (14) and (15), we eva lua t e  the e x p r e s s i o n s  in Eq. 
(11): 

�9 O--~ 2 1-- ~ ( X d ~ + D  ~ ; 
0 

R 
S at~ - ~  dx = 2(tcr--tmp)(R3R - -  ~); 

i 

l Ot~ 1 fc~ - -  f ~  

Ox J~=o -- %{a + 

Subs t i tu t ing  t h e s e  v a l u e s  in (11), we obta in  

B + 

C(R--~) ( ~ + ~ ) ]  d~=d% (18) 

w h e r e  

pye c~1 

A =  ~,l(tcr--tIn) ~ - ~  ' 

q ~iXl 2q Y2 (trap-- t c~) 
B = - 2" -~-" ;  C = .3RXl(tcr__ tm) �9 

The p a r t i c u l a r  so lu t ion  of Eq. (18) s a t i s f y i n g  the cond i -  
t ion ~(0) = 0 has  the f o r m  

-s ~] 
In o r d e r  to d e t e r m i n e  the f r e e z i n g  t i m e  T = r o fo r  the 
e n t i r e  p l a t e  i t  i s  n e c e s s a r y  to s e t  ~ = R in (19). Thus ,  

T o = ~ - -  - - + R  x 

x L t ~ -  t~ 3R'~tc~ - - t , ~ )  . . . .  ] - 

qyaX~ In 1+ 
2ct ~ - ~  

2c~ y,(tmU- tcr ) (k~ R R 2 ) 
- -  a(tc.~ - - t~)  ~ -  + Z- + ~ " (2o) 

We note  that  if in condi t ion (10) the  t e r m s  on the 
r i g h t  conta in ing  i n t e g r a l s  a r e  d i s c a r d e d ,  the equat ion 
a s s u m e s  the s i m p l e  f o r m  

The t e m p e r a t u r e  of the midd le  p lane  t2(R, 9 v a r i e s  
with ~ f r o m  the va lue  trap = H(R, 0) to the va lue  t c r  at 

= R; t h e r e f o r e  for  s i m p l i c i t y  we se t  

t=(R, ~) = trap+ ( tcr-  trap) ~ . (16) 

Subst i tu t ing  (16) in (15) we f ina l ly  obta in  

PY~ ~ = ~I t Ox I:=o' 

and then for law (14) finding the total freezing time re- 

duces to integration of the equation 

d z =  ~ l ( t c r - - tm)  
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SO 

To= tcrPY2R--tm(2~+1) . (21) 

Formula  (21) is Plank's  formula [8]. Thus, formula 
(20) is an improvement on formula (21). 

We note that s imilar  improvements can be in t ro -  
duced in connection with the freezing of spherical  and 
cylindrical bodies by first  t ransforming Stefan's con- 
dition (7) to the integral f o rm.  

NOTATION 

t is the temperature;  T is the time; X is the thermal  
conductivity; 7 is the specific weight; c is the specific 
heat; 2R is the thickness of plane-paral lel  plate; a is 
the heat t ransfer  coefficient; tcr  is the cryoscopic tem- 
perature;  t m is the temperature of medium; w is the 
relative moisture  content; co is the relative amount of 
frozen-out  water; L is the latent heat of melting of ice. 
The subscript  1 corresponds to the solid phase, the 
subscript  2 to the liquid phase. 
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